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Abstract. In the (M+1)SSM an additional gauge singlet Weyl spinor appears in the neutralino sector. For
a large part of the parameter space this approximative eigenstate is the true LSP. Then most sparticle
decays proceed via an additional cascade involving the NLSP → LSP transition, where the NLSP is the
non-singlet next-to-lightest neutralino. We present a comprehensive list of all processes, which contribute
to the NLSP → LSP transition, the partial widths and the total NLSP decay rate. We perform a scan
of the parameters of the model compatible with universal soft terms, and find that the NLSP life time
can be quite large, leading to macroscopically displaced vertices. Our results imply that the signatures
for sparticle production in the (M+1)SSM can be very different from the MSSM, and are important for
calculations of the abundance of dark matter in this model.

1 Introduction

The supersymmetric extension of the standard model with
an additional singlet superfield [1–8] has some attractive
features: the superpotential can be chosen to be scale in-
variant, hence the only dimensionful parameters – and
thus the electroweak scale – enter via the soft supersym-
metry breaking terms. With a scale-invariant superpoten-
tial, and assuming universal soft terms at the GUT scale,
the model has the same number of free parameters as the
MSSM. Several analyses of the parameter space of the
model have previously been performed in [4,5]. It has been
found that a considerable region is consistent both with
theoretical constraints (correct SU(2)L × U(1)Y symme-
try breaking, no squark or slepton vev’s, neutral LSP) and
experimental lower bounds on sparticle and Higgs masses.

It is very important to investigate in what respect
the phenomenology of the (M+1)SSM differs from that of
the MSSM. The signatures for sparticle production could
be different, and one would like to know which processes
could serve to distinguish the two models.

The particle content of the (M+1)SSM differs from
the MSSM in the form of additional gauge singlet states
in the Higgs sector (1 neutral CP-even and 1 CP-odd
state) and in the neutralino sector (a two component Weyl
fermion). These states are mixed with the corresponding
ones of the MSSM, and the physical states have to be
obtained from the diagonalization of the mass matrices
in the corresponding sectors. An interesting result of the
analyses in [4,5] is that, for most of the parameter space,
the mixing angles involving the singlet states are actually
quite small. Consequently there exist physical quasi singlet
states which have only small couplings to the gauge bosons
and the MSSM sparticles such as charginos, squarks and
sleptons. These states then have only small production

cross sections and it seems to be nearly impossible to ob-
serve them in present or future experiments.

A notable exception can occur, however, in the neu-
tralino sector. In the MSSM the neutralino sector con-
sists of two gauginos (the bino and the neutral wino)
and two higgsinos. Typically the LSP – the lightest su-
persymmetric particle, which is stable if one assumes, as
we do, R-parity conservation – is the lightest eigenstate
of the neutralino mass matrix. The LSP will appear as
one of the final states of each sparticle decay, and its non-
observability is responsible for the well-known missing en-
ergy/momentum signature of sparticle production.

The situation in the (M+1)SSM, where a singlino state
is added to the neutralino sector, depends crucially on its
mass with respect to the MSSM LSP mass: If the singlino
is heavier, it will very rarely be produced and it will be
practically unobservable. If it is lighter (and is thus the
true LSP), it will now appear at the end of the decay chain
of sparticles decays. To be more specific, from the analyses
performed in [5] one finds that the MSSM LSP, within the
allowed parameter space of the (M+1)SSM, is essentially
a bino. In the singlino LSP case of the (M+1)SSM one
has to keep in mind the small couplings of the singlino to
all the other particles. If the sparticles are heavier than
the bino (which turns out to be always the case, except
for some large supersymmetry breaking terms that yield
sparticles out of reach for LEP2) they thus prefer to de-
cay into the bino to which they couple more strongly. Only
then the bino will decay into the singlino LSP, which will
give rise to an additional cascade in the sparticle decay
chain. Since this process modifies the signatures for spar-
ticle production considerably, we will investigate the bino
to singlino transition in detail in this paper.

Production and decay of neutralinos have previously
been discussed in the MSSM in, e.g., [9] and in the
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(M+1)SSM in [7]. (Many of the formulas of the partial
decay widths in our appendix D can be found in these pa-
pers.) In [7] production cross sections and branching ratios
of neutralinos in the (M+1)SSM have been presented for
several scenarios concerning the low energy parameters.

Here, however, we are interested in a comprehensive
analysis of the part of the parameter space of the
(M+1)SSM which is compatible with universal soft terms
at the GUT scale, which corresponds to the case of a
singlino LSP, and where sparticle production is kinemati-
cally possible at LEP2. Our aim is to see, which bino life-
times and bino branching ratios are possible under these
assumptions. With our results at hand one can decide,
which signatures for sparticle production (beyond the ones
of the MSSM) are most promising in the framework of the
(M+1)SSM, and which part of the parameter space can
be tested.

Our approach follows closely the one of [5], up to
slightly different experimental constraints on the parame-
ter space: We start to scan the complete parameter space
of the model (the universal soft terms and Yukawa cou-
plings, see the next section) as defined at the GUT scale.
For each point in the parameter space we compute the ef-
fective parameters at low energy by integrating the renor-
malization group equations from MGUT down to MZ .
Then, for each set of parameters, we minimize numerically
the effective potential including the one loop radiative cor-
rections induced by top quark and squark loops. We check
whether the absolute minimum of the potential breaks
SU(2)L×U(1)Y as desired, whether squarks or sleptons do
not assume vev’s, and whether the physical masses of the
top quark and the sparticles satisfy the (model indepen-
dent) present experimental constraints. (Details are given
in the next section.) Finally we require that the LSP, χ̃0

1,
is essentially a singlino state (otherwise the signatures for
sparticle production are not different from the MSSM),
and that the mass of the NLSP χ̃0

2 (which is the bino)
is below MZ . Under this approximate condition sparticle
production at LEP2 is kinematically allowed.

For each of the ∼ 104 remaining points in the param-
eter space, we compute the following decay widths: χ̃0

2 →
χ̃0

1l
+l−, χ̃0

2 → χ̃0
1νν̄, χ̃

0
2 → χ̃0

1qq̄ (in all cases we take Z,
Higgs and slepton or squark exchange into account), χ̃0

2 →
χ̃0

1+Higgs and χ̃0
2 → χ̃0

1 + γ. (The radiative decays into
a photon have previously been considered in the MSSM
in, e.g., [10,11], and in the (M+1)SSM in [7].) The results
give us both the life time and the branching ratios of the
NLSP → LSP transition for each point in the parameter
space of the model, which is consistent with universal soft
terms, present experimental constraints, and which is of
potential phenomenological relevance for LEP2.

Clearly many steps of this procedure (e.g. the integra-
tion of the RGEs, the minimization of the effective po-
tential, the diagonalization of the mass matrices and the
phase space integrals) require numerical methods. These
allow us, however, to obtain the results with satisfactory
accuracy. On the other hand, we find it very desirable to
understand at least the rough features of our results (and
of the range of the low energy parameters) using analytic

approximations to the integrated RGEs, the minimization
of the effective potential, and the diagonalization of the
mass matrices. Therefore we spend some time in Sect. 3
in order to discuss the interplay between the different the-
oretical and experimental constraints on the parameters
within such analytic approximations. These approxima-
tions allow us to understand the relative importance and
the orders of magnitude of the different decay widths in
Sect. 4. The results on the different decay widths, branch-
ing ratios and the total life time presented in Sect. 4 (and
in the figures) are, however, based on the “exact” numer-
ical procedure.

Our results show that, even in the limit of tiny cou-
plings of the singlino, a priori a large number of different
processes can contribute to the bino to singlino transition.
Only after a detailed investigation of all the partial widths
we find that only a few of them are relevant: Essentially
the three body decays with two leptons in the final state
(via virtual slepton exchange) or with qq̄ in the final state
(via virtual Z exchange), and in some cases the two body
decay into a real singlet Higgs scalar or a photon. Inter-
estingly enough we find that, for small enough Yukawa
couplings, the lifetime of the bino becomes so large that
displaced vertices appear to be visible.

Two cosmological issues should also be discussed with-
in the (M+1)SSM, namely domain walls and dark matter.
The (M+1)SSM with a scale invariant superpotential has
a discrete Z3 symmetry, which can lead to the formation
of domain walls with an unacceptable energy density dur-
ing the electroweak phase transition [6]. As discussed in
[6], possible ways out of this problem are to embed the
discrete symmetry into a gauge symmetry at some large
scale, or to add tiny mass terms, which do not modify
the phenomenology in a visible way, but which break the
Z3 symmetry sufficiently such that the domain walls are
removed.

The LSP of any supersymmetric theory with conserved
R parity is a priori a welcome candidate for cold dark mat-
ter. It will necessarily be produced in sparticle decays in
the early universe, and its relic density will strongly de-
pend on its annihilation cross section. The (M+1)SSM
has been considered in this respect in [8], where both up-
per and lower limits on the LSP relic density have been
imposed. In [8] it has been argued that the singlino LSP
scenario of the (M+1)SSM is essentially ruled out, since
the pair annihilation cross section is too small, and conse-
quently the relic density is too large. However, in [8] only
the LSP pair annihilation has been considered. In partic-
ular in the case of small Yukawa couplings the situation
for a singlino LSP is, however, much more complicated:
The binos could pair annihilate before the LSP is pro-
duced, and the bino-singlino coannihilation rate is much
larger than the singlino pair annihilation rate. In order to
determine the dark matter constraints in the (M+1)SSM
with singlino LSP reliably it is thus absolutely necessary
to know the bino lifetime or the bino to singlino decay
rate. Apart from the modified signatures for sparticle pro-
duction the results of this paper will thus also find ap-
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plications in the investigation of the dark matter in the
(M+1)SSM.

The paper is organized as follows: In the next section
we present the lagrangian and discuss briefly the method
of the scanning of the acceptable parameter space; this
procedure follows the one of [5]. In section three we study
the range of parameters in the singlino LSP scenario in
some detail, focussing on analytic approximations. In sec-
tion four we investigate all possible bino to singlino decay
channels, the corresponding contributions to the partial
bino decay widths, and the bino lifetime. We present both
approximate analytic results, and “exact” results based
on the numerical procedure. In section five we discuss our
results and its phenomenological consequences.

2 Parameter Space of the (M+1)SSM

In this section, we study the parameter space of the model
with the same assumptions as in [5]. The superpotential
of the (M+1)SSM is given by

W = λH1H2S +
1
3
κS3 + . . . (1)

where the ellipsis stand for quarks and leptons Yukawa
couplings,

H1 =
(
H+

1
H0

1

)
, H2 =

(
H0

2
H−

2

)
and H1H2 = H+

1 H
−
2 −H0

1H
0
2 . (2)

Here the Higgs doublet H1 couples to the up-type
quarks, and H2 to the down-type quarks and the charged
leptons. Therefore the usual parameter β is given by

tanβ =
h1

h2
(3)

with hi = 〈H0
i 〉. S denotes the gauge singlet superfield be-

yond the MSSM. The superpotential contains no µH1H2
term. An effective µ term is generated once the scalar
component of the singlet S acquires a vev s:

µ = λs. (4)

The only dimensionful parameters of the model are the
supersymmetry breaking gaugino masses, scalar masses
and trilinear couplings (for simplicity we do not display
the terms involving squarks or sleptons):

Lsoft =
1
2
(
M3λ

a
3λ

a
3 +M2λ

i
2λ

i
2 +M1λ1λ1

)
+ h.c.

−m2
1|H1|2 −m2

2|H2|2 −m2
S |S|2

−λAλH1H2S − 1
3
κAκS

3 + h.c. (5)

λ1, λ2 and λ3 are the gauginos of the U(1)Y , SU(2)L and
SU(3)c gauge groups respectively. The scalar components
of the Higgs in (5) are denoted by the same letters as the
corresponding chiral superfields.

The scalar potential contains the standard F and D
terms, the supersymmetry breaking terms and one loop
radiative corrections of the form

Vrad =
1

64π2 STrM4 ln
(M2

Q2

)
. (6)

In (6) we take into account only top quark and squark
loops, but we include the numerically important contribu-
tions beyond the leading log approximation which result
from the complete top squark mass matrix. Q2 denotes
the renormalization point, and all the parameters in (1),
(5) and (6) have to be taken at the scale Q2 ∼ M2

Z .
The supersymmetry breaking terms of the model are

constrained by requiring universal terms at the scale
MGUT ∼ 1016 GeV. The independent parameters of the
model are thus universal gaugino masses M0 (always pos-
itive in our convention), a universal mass for the scalars
m2

0, a universal trilinear coupling A0 (either positive or
negative), and the Yukawa couplings λ0 and κ0 of the su-
perpotential (1) at the scale MGUT . In addition the top
quark Yukawa coupling affects the renormalization group
evolution of the parameters from MGUT down to the elec-
troweak scale. The value of the Z mass fixes one of these
parameters with respect to the others, so that we end up
with 5 free parameters at the GUT scale, as many as in
the MSSM with universal soft terms.

Following the same procedure as in [5], we perform
a scan over the complete parameter space of the model
at MGUT , integrate the renormalization group equations
(RGE) down to the electroweak scale, and minimize the
low energy effective potential including the radiative cor-
rections (6) numerically in each case. We check whether
we have found the absolute minimum of the potential, and
verify whether squarks or sleptons do not assume vev’s,
which would break color and/or electromagnetism. Al-
ready at this stage, the condition to avoid selectron vev’s
(which are the most dangerous ones) yields a constraint
on the parameter space [5]:

A0

M0
>∼ − 2.5 (7)

In the remaining cases we diagonalize numerically the
mass matrices, compute the physical masses of all par-
ticles and impose the following experimental constraints:

mν̃ > MZ/2 GeV [12],
mt = 175 ± 6 GeV [13]. (8)

Note that, since signatures for sparticles production in
the present scenario may be different from the MSSM, we
cannot apply the standard MSSM analysis to the latest
data from LEP1.5 and LEP2. This data should rather be
reanalysed, in the context of the (M+1)SSM, using the
results of the present paper. However, the LEP1 results
on the Z width and thus the sneutrino mass mν̃ remain
valid. Moreover it turns out that the essential properties
of the neutralino sector do not depend on the details of
the lower limits on, e.g., the chargino or slepton masses.
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Furthermore, within the present assumption of uni-
versality of the soft parameters at the GUT scale and
the singlino LSP scenario, (8) imply already strong con-
straints on the other new particle masses (cf Sect. 3), so
that nearly all the other experimental bounds turn out to
be automatically satisfied:

mχ0
i
+mχ0

j
> MZ

or Γ (Z → χ̃0
i χ̃

0
j ) < 7 MeV if (i, j) = (1, 1),

Γ (Z → χ̃0
i χ̃

0
j ) < 30 MeV if (i, j) 6= (1, 1),

mH± > 150 GeV, mA0 > 130 GeV,
mt̃1

> 190 GeV, mg̃ > 280 GeV,
mχ±

1
> 60 GeV, ml̃R

> 60 GeV

where A0 is the lightest non-singlet neutral CP-odd Higgs.
The lightest non-singlet CP-even Higgs is in the range
from 100 GeV up to 140 GeV.

As emphasized in [4,5], the allowed parameter space of
the (M+1)SSM is in general characterized by small values
of the Yukawa couplings λ and κ
(λ, κ <∼ 0.3). As we will see in the next section the singlino
LSP case corresponds to even smaller values of the Yukawa
couplings λ, κ <∼ 10−2.

3 Singlino LSP scenario

In this section we present some special features of the
singlino LSP scenario. In particular, we derive some ap-
proximative constraints on the high energy free parame-
ters and some analytic approximations for the low energy
masses and mixing factors. These approximations are use-
ful to understand the features of our numerical results and
will provide us with helpful guidelines for the calculations
of the next section. To this end we use approximate rela-
tions between the low energy and high energy parameters
of the model (as obtained from the RGEs), and relations
obtained from the minimization of the tree level potential.
At the beginning we assume that the Yukawa couplings λ
and κ are small, but this assumption will be justified be-
low.

In order to derive the constraints on the parameters
implied by the singlino LSP scenario we first have to find
approximate expressions for the singlino and the lightest
non-singlet neutralino masses.

Let us start with the singlino mass M . From the neu-
tralino mass matrix (61) of Appendix A one finds that the
mixing of the singlino to the higgsinos is proportional to
λ and thus relatively small. Hence, the singlino remains
an almost pure state, and its mass is

M = 2κs. (9)

Using the minimization of the tree level potential the vev s
and hence M can be related to the bare parameters of the
model: For small Yukawa couplings (and hence s � h1, h2)
the minimization equation (69) for the singlet becomes

s ' −Aκ

4κ

(
1 +

√
1 − 8m2

S

A2
κ

)
. (10)

Aκ and mS being only slightly renormalized between
MGUT and MZ (cf Appendix C), one obtains the singlino
mass in terms of the GUT parameters:

M ' −A0

2

(
1 +

√
1 − 8m2

0

A2
0

)
. (11)

Note that M has the sign opposite to A0. The condition
for the minimum (10) to be deeper than the symmetric
one (h1 = h2 = s = 0) reads

A2
0 >∼ 9m2

0, (12)

so that

2
3
|A0| <∼ |M | <∼ |A0|. (13)

Next, we estimate the masses of the lightest non-singlet
neutralinos. The higgsino effective mass term µ = λs turns
out to be quite large (see below). Since the mixing terms
between the gauginos and the higgsinos are at most of
O(MZ/2µ), one finds that, to a good approximation, the
lightest non-singlet neutralinos are the (nearly pure) bino
and the wino. Their masses M1 and M2 are related to M0
as given in appendix C:

M1 ' .5M2 ' .41M0. (14)

The condition for the singlino to be the LSP is given
by M < M1, which, combined with (13) and (14), yields

|A0| <∼ .6M0. (15)

(Note that this condition is compatible with the neces-
sary condition for the absence of color and/or electro-
magnetism breaking vevs, (7).) Equation (15) together
with (12) implies that the singlino LSP scenario discards
large |A0|/M0 and m2

0/M
2
0 ratios, and it just corresponds

to a very natural “gaugino dominated scenario”, gaugino
masses being the largest soft terms. Then, the masses of
all non-singlet sparticles can be expressed in terms of M0
and are therefore strongly correlated.

For later use it is convenient to introduce a parameter
η, defined by the ratio of the masses of the lightest and
next-to-lightest neutralinos:

η =
mχ0

1

mχ0
2

' M

M1
. (16)

Unlike in the MSSM, it is not fixed by universality con-
straints at the GUT scale, but it is rather a free parameter
varying from −1 to +1. Equations (13) and (14) allow us
to express η easily in terms of the bare parameters A0 and
M0:

η ∼ −2
A0

M0
. (17)

Next, we wish to estimate the higgsino effective mass
term µ = λs, and show that it is quite large. Below, the
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knowledge of µ will allow us to relate η to the Yukawa cou-
pling λ. First, the minimization of the tree level potential
with respect to h1 and h2 gives the relation

tan2 β =
m2

2 + µ2 +M2
Z/2

m2
1 + µ2 +M2

Z/2
. (18)

The condition for a non-trivial minimum corresponds to
the condition that the denominator of (18) has to be pos-
itive. The approximative solutions of the RGEs (84) and
(85) imply that m2

2 > 0, whereas m2
1 < 0. Hence one ob-

tains

µ2 >∼ −m2
1 − .5M2

Z
>∼ 2.1M2

0 − .5M2
Z . (19)

Since, in addition, phenomenological constraints imply
that M0 is quite large (M0 >∼ 110 GeV, see below),
one finds µ2 � M2

Z . Actually, from our numerical results
(within the singlino LSP scenario) we find tanβ >∼ 6 which
implies

µ2 ' 2.5M2
0 − .5M2

Z . (20)

in agreement with (19).
Next, we derive an upper limit on the Yukawa cou-

plings within the singlino LSP scenario. First, from the
absence of a deeper unphysical minimum of the Higgs po-
tential with h2 = s = 0, the following inequality can be
derived [5]:

κ < 3.10−2 A
2
0

M2
0
. (21)

Furthermore, from the numerical analysis, the Yukawa
couplings λ and κ turn out to be closely related:

κ ∼ λ1.5±.3. (22)

Using (17) in (21) and (22) one finds that the singlino LSP
scenario requires small Yukawa couplings, λ, κ <∼ 10−2.

On the other hand, no lower limit on the Yukawa cou-
plings has been found in our analysis; we allowed for cou-
plings as small as λ = 10−6. In this regime one can show
that the singlino LSP scenario follows automatically: Us-
ing (9), (4), (22) and (20), one gets

|M | = 2κ|s| = 2κ|µ|/λ ∼ 2λ.5±.3|µ| ∼ 3.2λ.5±.3M0,(23)

so that

|η| ∼ 7.7λ.5±.3. (24)

Hence, for very small values of λ (λ <∼ 10−5 in our numer-
ical analysis), the singlino LSP scenario is always realized
and η � 1. The compatibility of (24) with (17) requires
some relation between the bare parameters A0, M0 and
λ0 of the model which is, however, not very stringent.

Herewith we conclude the discussion of the constraints
on the parameters of the model implied by the singlino
LSP scenario. With the help of these results we can now
obtain approximate expressions for all quantities which

are required in order to calculate the bino to singlino de-
cay widths: the mixing parameters of the singlino with
the other non-singlet neutralinos, and the masses of the
sfermions and the Higgs bosons. Let us first study the
mixing parameters:

For |η| not too close to 1, one can expand the singlino
and the bino eigenstates in small mixing parameters in
the basis of (59):

N1i ∼
(

λg2(h2
2 − h2

1)µ√
2(M −M2)(M2 − µ2)

,

λg1(h2
1 − h2

2)µ√
2(M −M1)(M2 − µ2)

,

λ(µh1 −Mh2)
M2 − µ2 ,

λ(µh2 −Mh1)
M2 − µ2 , 1

)
, (25)

N2i ∼
(−g1g2(M1(h2

1 + h2
2) + 2µh1h2)

2(M2 −M1)(M2
1 − µ2)

, 1,

g1(µh2 +M1h1)√
2(M2

1 − µ2)
,
−g1(M1h2 + µh1)√

2(M2
1 − µ2)

,

λg1(h2
1 − h2

2)µ√
2(M1 −M)(M2

1 − µ2)

)
. (26)

Using (14), (20), (16) and h1 � h2, these components
can be expressed in terms of η, M1 and MZ . (However,
(25) and (26) are not valid anymore in the degenerate case
|η| → 1.) These expressions for the mixing parameters will
be used extensively for the analytic approximations in the
next section.

Next, we turn to the sfermion sector. The lightest sta-
tes are the sneutrinos ν̃ and the “right handed” charged
sleptons l̃R. The approximate expressions for their masses
are (cf Appendix C)

m2
l̃R

= m2
E − sin2 θWM2

Z cos 2β ' .15M2
0 + .23M2

Z , (27)

m2
ν̃ = m2

L + 1
2M

2
Z cos 2β ' .52M2

0 − .5M2
Z . (28)

The lower limit on mν̃ (8) combined with (28) gives a
lower limit on M0 ( >∼ 110 GeV), which in turn puts a
lower limit on ml̃R

( >∼ 60 GeV). “Left handed” charged
sleptons and squarks are always much heavier, hence un-
interesting for the present phenomenology.

The lower limit on M0 also yields a lower limit on
the bino mass: mχ0

2
>∼ 30 GeV. Subsequently we restrict

our analysis to the regime mχ0
2
< MZ , where sparticle

production at LEP2 (at least the pair production of binos)
is kinematically allowed. In terms of M0 this corresponds
to M0 <∼ 230 GeV. In this region of the parameter space,
the bino is the NLSP. Note that for larger values of M0
the D-term in (27) becomes negligible and one has

m2
l̃R

' .15M2
0 < M2

1 ' .17M2
0 . (29)

Thus, for M0 >∼ 320 GeV, l̃R turns out to be the NLSP.
We shall come back to the case mχ0

2
> MZ in the last

section.
The large value of µ implies that the lightest chargino

χ±
1 is mainly a wino of mass M2, which is related to M0 by
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(14). However, for small values of M0 the higgsino com-
ponent can be quite large (up to 50%) and mχ±

1
smaller

than M2. The lower bound on M0 yields mχ±
1
>∼ 60 GeV.

Similarly, from the lower bound on M0, we obtain the
lower bound on the gluino mass given in the previous sec-
tion.

Finally, we briefly focus our attention on the Higgs
sector. We see from the mass matrices given in Appendix B
that the mixings of the CP-even and CP-odd singlets with
the non-singlet Higgs fields are proportional to λ, hence
small. Here again, the singlet sector decouples and we end
up with two almost pure singlet states, a scalar of mass

M2
S,33 ' 1

4

√
A2

0 − 8m2
0

(
|A0| +

√
A2

0 − 8m2
0

)
, (30)

and a pseudoscalar of mass

M2
P,22 ' 3

4
|A0|

(
|A0| +

√
A2

0 − 8m2
0

)
(31)

where we have used (72), (77) and (10). The pseudoscalar
is always heavier than the scalar singlet and, using argu-
ments similar to (23), one finds that their masses are both
roughly proportional toM ∼ λ.5±.3M0 in the singlino LSP
case. Therefore, the singlet states are the lightest Higgs
states.

In the non-singlet sector, we have one CP-odd pseu-
doscalar A0 of mass

M2
P,11 ' 0.3M2

0

sin 2β
(32)

where we have used (20) and the approximate solution of
the RGE for Aλ (81) in the limit m0, A0 � M0. As tanβ
is always quite large, A0 turns out to be relatively heavy
as already remarked in Sect. 2. The mixing term between
the CP-even fields H1R and H2R is proportional to:

M2
S,12

M2
S,22 −M2

S,11
∼ cotβ � 1. (33)

H1R and H2R are then almost pure states of mass

M2
S,11 ' M2

Z , (34)

M2
S,22 ' 0.3M2

0 tanβ > M2
S,11. (35)

These approximations must be taken with care, as they
do not include the numerically important radiative con-
tributions beyond the RGE to the effective potential (6).
Nevertheless, we find from the numerical analysis (with
the radiative corrections to the effective potential inclu-
ded) the following particle assignments and mass ranges in
the Higgs sector, in agreement with our rough estimates:

S1 ∼ SR 0 <∼ mS1
<∼ 60 GeV,

S2 ∼ H1R 100 <∼ mS2
<∼ 120 GeV,

S3 ∼ H2R 130 <∼ mS3
<∼ 360 GeV,

P1 ∼ SI 0 <∼ mP1
<∼ 130 GeV,

P2 ∼ A0 130 <∼ mP2
<∼ 350 GeV.

However, the upper bounds given above increase if one
relaxes the condition M1 < MZ , allowing for higher values
of M0.
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χ1
0

f

f
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χ2

0

χ1
0

f

f

Sa/Pα

χ2
0

f

f

χ1
0

f
χ2

0

f

f

χ1
0

f

Fig. 1. Diagrams contributing to the three body decay χ̃0
2 →

χ̃0
1ff̄

χ2
0

χ1
0

Sa/Pα

Fig. 2. Feynman graph for the two body decay χ̃0
2 → χ̃0

1Sa/Pα

χ2
0

χ1
0

γ

l

l

lR

χ2
0

χ1
0

γ

l

lR

lR

Fig. 3. Contributions to the radiative decay χ̃0
2 → χ̃0

1γ with
only charged lepton/“right” slepton loops

4 Bino to singlino transition

In this section we compute the bino to singlino decay
widths. As already mentioned, this process is crucial as
it will appear at the end of every sparticle decay chain
in the singlino LSP case. The different contributions are
shown in Figs. 1–3. Exact formulae for the corresponding
decay widths are given in Appendix D. The production
and decay of neutralinos have already been studied in the
(M+1)SSM framework for a few selected points in the pa-
rameter space [7]. Instead, we have computed the partial
and total decay widths numerically for each point in the
parameter space obtained from our numerical scanning.

In the following, we first present some simple analytic
approximations so as to understand the main features of
the bino to singlino transition. Then we discuss our the
“exact” results, which are based on the numerical integra-
tion of the RGEs, the numerical minimization of the full
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Higgs potential, the numerical computation of the mixings
and mass eigenvalues in the neutralino, chargino and Higgs
boson sector, and the integration of the exact phase space
integrals. These results turn out to be in good agreement
with the analytic approximations.

First of all, let us consider the tree level three body
decay χ̃0

2 → χ̃0
1ff̄ of Fig. 1. The fermions can be charged

leptons, neutrinos or quarks (in which case we end up with
two jets). All the decay widths are proportional to λ2 – one
factor λ from the non-singlet component of the singlino,
raised to the square – and are hence equally suppressed.
Therefore, for each final state, we have to check whether
the virtual Z, sfermion or Higgs exchange gives the main
contribution and whether we have to compute interference
terms.

Let us start with a pair of charged leptons in the final
state. The partial width via virtual Z exchange is given
by (97) [9]. It depends on the mixing factor O12 in the
coupling Zχ̃0

1χ̃
0
2 defined by (95), and a phase space inte-

gral IZ defined by (98). In our analytic approximations we
assume a very light singlino, i.e. η small. (We shall come
back later to the case η 6→ 0.) Using (25) and (26) in the
limit of large tanβ and |η| � 1, the mixing factor O12 can
be written

O12 ' 1.7 10−2λ

(
MZ

M1

)2

. (36)

As we take |η| small, the phase space integral IZ is of
O(10−1), so that the decay width reads

Γ (χ̃0
2

Z−→ χ̃0
1l

+l−) ' 6.10−9λ2M1IZ(η, ωZ)
∼ 10−10λ2M1. (37)

For the slepton exchange, the partial width is given by
(108) [9]. Since the “left” type charged sleptons are always
much heavier than the “right” type ones, their contribu-
tion will be relatively unimportant. The vertex factor in-
volves the mixing factor N12 defined in (62). Using (25)
with the same assumptions as above yields

√
2 g1N12 ' .13λ

(
MZ

M1

)2

. (38)

The partial width then reads

Γ (χ̃0
2

l̃R−→ χ̃0
1l

+l−) ' 2.10−6λ2M1

(
MZ

ml̃R

)4

Il̃R(η, ωl̃R
).

(39)

As for the Z exchange, the phase space integral Il̃R , given
by (109), is of O(10−1). One can infer from (27) that the
ratio MZ/ml̃R

is always of O(1). Equation (39) then gives

Γ (χ̃0
2

l̃R−→ χ̃0
1l

+l−) ∼ 10−7λ2M1 (40)

� Γ (χ̃0
2

Z−→ χ̃0
1l

+l−)

In the case of virtual Higgs exchange, the partial width
is given by (103) and depends, in this case, on the mixing

factors Qa12 and Qal defined in (99), (101), respectively.
(Here and below the index l denotes a charged lepton and
replaces the index f in (101).) First, we observe that if
the lightest Higgs scalar (which is the singlet) is too heavy
to be produced on shell, the partial width for its virtual
exchange is proportional to λ6, and hence completely neg-
ligible:

Q112 ∼ λ2 and Q1l ∼ λ

=⇒ Γ (χ̃0
2

SR−→ χ̃0
1l

+l−) ∼ λ6. (41)

The result is similar for the singlet pseudoscalar SI , which
is always heavier than SR. As shown in the previous sec-
tion, the second scalar S2 is mainly H1R, so that

Q212 ' λ√
2
N24 − g1

2
N13 ' λg1h1

µ
, (42)

Q2l ' mlS22√
2h2

' ml√
2h1

(43)

where ml denotes the lepton mass and we have used (25),
(26) and (33). Equation (103) then gives

Γ (χ̃0
2

H1R−→ χ̃0
1l

+l−) ' 10−5λ2M
3
1m

2
l

m4
H1R

I2(η, ω2). (44)

As before, the phase space integral I2, given by (104),
is of O(10−1). The only leptonic final state with sizable
couplings to the Higgses is the τ+τ− pair. Taking for H1R

a mass of order 100 GeV, we get

Γ (χ̃0
2

H1R−→ χ̃0
1τ

+τ−) ∼ 10−14λ2 M3
1

(1GeV)2
. (45)

Even if one takes M1 = MZ , this is completely negligible
compared to (40). The second pseudoscalar A0 and the
third scalar H2R being much heavier than H1R will give
even smaller contributions.

To summarize, the dominant contribution to the χ̃0
2 →

χ̃0
1l

+l− transition is the slepton exchange, and we do not
need to compute any interference term between diagrams.
This remains valid for any value of η, although the partial
width can become significantly smaller than (40) as the
phase space is reduced for |η| → 1.

Next, we turn to the neutrino production χ̃0
2 → χ̃0

1νν̄.
The Higgs exchange does not contribute. For the par-
tial width via Z exchange, we get the same result as for
charged leptons with an extra factor 2 from the Zνν̄ ver-
tex. As the sneutrino is a “left” type sfermion, the vertex
factor required for the sneutrino exchange is slightly dif-
ferent:

1√
2
(g2N11 − g1N12) ' .17λ

(
MZ

M1

)2

. (46)

The partial width reads

Γ (χ̃0
2

ν̃−→ χ̃0
1νν̄) ' 10−6λ2M1

(
MZ

mν̃

)4

Iν̃(η, ων̃)

>∼ 10−8λ2M1. (47)
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Fig. 4. Branching ratio of the charged lepton production χ̃0
2 →

χ̃0
1l

+l− versus the Bino mass mχ0
2

Although sneutrinos can be rather heavy (∼ 150 GeV for
M1 = MZ), this contribution always remains larger than
the one from Z exchange. Thus, the virtual sneutrino ex-
change gives the main contribution to the χ̃0

2 → χ̃0
1νν̄

channel and the computation of interference terms is not
needed.

Finally we consider the decay into two jets χ̃0
2 → χ̃0

1qq̄.
The top is too heavy to be produced. The partial width via
virtual Z exchange is of the same order as in the case of
leptons (with an extra color factor Nq = 3 and slightly
different Zff̄ couplings), whereas the squark exchange
is strongly suppressed because squarks are always rather
heavy. As for charged leptons, the virtual Higgs exchange
plays no role. Hence, the virtual Z exchange is the only
important contribution to the χ̃0

2 → χ̃0
1qq̄ partial width,

which therefore is always small compared to the partial
width into two leptons via slepton exchange.

With the approximate expressions for the three body
decays χ̃0

2 → χ̃0
1l

+l−, χ̃0
2 → χ̃0

1νν̄ and χ̃0
2 → χ̃0

1qq̄ at hand,
we turn now to the “exact” numerical results. In Figs. 4-6
we present our numerical results for the branching ratios
of the three body decays χ̃0

2 → χ̃0
1l

+l−, χ̃0
2 → χ̃0

1νν̄ and
χ̃0

2 → χ̃0
1qq̄ (q = u, d, c, s, b) respectively, for ∼ 104 points

in the parameter space described in Sect. 2. Here we used
exact expressions for the mixing factors, the phase space
integrals and we included all contributions to a given final
state.

From the previous discussion, the branching ratios do
not depend on λ, since all the partial widths are propor-
tional to λ2, but essentially on the bino mass: For small
values of mχ0

2
(∼ 30 GeV), sneutrinos are lighter than

Fig. 5. Branching ratio of the neutrino production χ̃0
2 → χ̃0

1νν̄
versus the Bino mass mχ0

2

charged sleptons (∼ 45 GeV and ∼ 60 GeV respectively),
therefore the main contribution to the total decay width
is the neutrino production via virtual sneutrino exchange
(Fig. 5). As the bino mass increases, the sneutrino mass
gets larger than the charged slepton mass. The dominant
process is then the charged lepton production via virtual
slepton exchange (Fig. 4) (except for a small domain in
the parameter space on which we shall come back in the
next paragraph). As advertised earlier, the jet produc-
tion (Fig. 6) is always small. In the domain of large bino
masses, where sleptons are also relatively heavy, the quark
production via virtual Z exchange can contribute up to ∼
20% to the total width. Genuinely we have

10−4 <∼
Γ (χ̃0

2 → χ̃0
1qq̄)

Γ (χ̃0
2 → χ̃0

1l
+l−)

<∼ 10−1. (48)

Let us now study the two body decay into a real Higgs
boson of Fig. 2, starting again with approximate analytic
expressions. The lightest non-singlet scalar (which is main-
ly H1R) is too heavy to be produced on shell. As already
remarked in (41), one gets for the bino-singlino-singlet
Higgs scalar vertex factor

Q112 ∼ λ2, (49)

so that the partial width (110) [9] approximately reads

Γ (χ̃0
2 → χ̃0

1SR) ∼ λ4M1. (50)

For small values of λ, this is completely negligible com-
pared to the three body decay rates. Yet, (50) involves no
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Fig. 6. Branching ratio of the jet production χ̃0
2 → χ̃0

1qq̄ (q =
u, d, c, s, b) versus the Bino mass mχ0

2

tiny numerical factor stemming from virtually exchanged
particles. Hence, if λ is not too small, real Higgs singlet
production can even dominate the total decay width. How-
ever, as emphasized in the previous section, the masses of
S̃ and SR are roughly proportional to λ.5±.3M0. There-
fore, if λ is too large, the singlet Higgs scalar and the
singlino become too heavy to be produced on shell in the
bino decay and this channel is kinematically forbidden.

The numerical results are displayed in Fig. 7. They are
in good agreement with our approximations and one finds
that for a small window in λ, λ ' 10−3, the branching
ratio of this process can reach 90%. In the same window,
we could have the two body decay with a real singlet Higgs
pseudoscalar χ̃0

2 → χ̃0
1SI . However, since the pseudoscalar

singlet is always heavier than the scalar, this contribution
remains small ( <∼ 5%). If λ >∼ 2.10−3, the emitted Higgs
singlet is heavy enough to decay into bb̄, which is then the
main final state. For smaller values of λ, this channel is
kinematically closed. Depending on the singlet mass, the
τ+τ−/cc̄ channels are then favored. Smaller singlet masses
correspond to smaller values of λ, in which case the real
Higgs singlet production is negligible.

Finally, we turn to the radiative decay χ̃0
2 → χ̃0

1γ.
A complete calculation involves loops with fermions +
sfermions and charginos + W , charged Higgs and Gold-
stone bosons (depending on the gauge choice) [10]. The
corresponding contributions decrease with increasing mas-
ses of the particles inside the loops. In the following an-
alytic approximation, we then only consider the domi-
nant diagram, involving the lightest particles in the loops,
namely the “right” type charged sleptons (Fig. 3). How-
ever, it is worth being stressed that we performed a com-

Fig. 7. Branching ratio of the real singlet Higgs scalar pro-
duction χ̃0

2 → χ̃0
1S1 versus log(λ)

plete numerical analysis, including all the loops mentioned
above with the correct chargino and stop mass eigenstates
[14]. The effective coupling (112) for three degenerate l̃R
loops is given by

gγ =
3eg2

1N12

16π2 Iγ(η, ωl̃R
)

' 2.10−4λ

(
MZ

M1

)2

Iγ(η, ω̃
R
) (51)

where Iγ , defined in (113), is of O(10−1) if |η| 6→ 1. The
partial width (111) then reads

Γ (χ̃0
2 → χ̃0

1γ) ∼ 10−11λ2M
4
Z

M3
1
. (52)

Even for small values of M1, this is totally negligible com-
pared to the three body decay rates. This is not surprising
since it is a contribution of higher order in perturbation
theory. Note that there is no “dynamical enhancement”
mechanism for this channel in our model as it can appear
in the MSSM under special assumptions [10,11]. However,
there could be some “kinematical enhancement”:

Up to now, we have assumed |η| � 1 (i.e. very light
singlino) in all our analytic approximations. What hap-
pens for |η| → 1 ? On the one hand, all the three body
decay phase space integrals (98), (104) and (109) tend to-
wards 0. As it has already been mentioned elsewhere [10,
11], one can check that they are all of order

I(η, ω)
|η|→1∼ (1 − |η|)5. (53)
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Fig. 8. Branching ratio of the radiative decay χ̃0
2 → χ̃0

1γ versus
η

Hence, all the χ̃0
2 → χ̃0

1ff̄ channels are equally suppressed.
Furthermore, since in this case the singlino mass is close
to the bino mass, the two body decay with a real singlet
Higgs boson is kinematically forbidden.

On the other hand, it is well known that the radiative
decay χ̃0

2 → χ̃0
1γ is usually less suppressed for |η| → 1.

One can expand the loop integral (113) around η = ±1:

Iγ(η, ωl̃R
)

η→1∼ (1 − η)5

η→−1∼ (1 + η)3. (54)

Therefore, the radiative decay gives the main contribu-
tion to the total decay width for η → −1, but not for
η → 1. This phenomenon has not been observed before
in the context of radiative neutralino decay. A similar ef-
fect exists for the neutrinoless double beta decay where
the result depends on the relative sign of the Majorana
neutrino masses [19]. This rough estimate correctly fits
our numerical results for the branching ratio Br(χ̃0

2 →
χ̃0

1γ), shown in Fig. 8. Actually, one finds that the main
contributions to the radiative decay are the charged lep-
ton/“right” slepton loops, the top/lighter stop loops and
the lighter chargino/W loops [14]. Interferences between
chargino and sfermion loops being destructive, this leads
to even smaller branching ratios for the radiative decay,
and this channel is kinematically enhanced only for a few
points in the parameter space corresponding to η ∼ −1.

To conclude, we give in Fig. 9 the total width of the
bino to singlino transition, including all the contributions
discussed above, as a function of λ. The λ2 dependence
is manifest for very small values of λ where the singlino
is always very light. As λ increases, the singlino mass can

Fig. 9. Total decay width of the bino to singlino transition
log(Γ (χ̃0

2 → χ̃0
1X)) versus log(λ)

take non negligible values, in which case the bino decay is
kinematically suppressed. These cases correspond to the
points in Fig. 9 below the “fat” diagonal line. From the
total width it is straightforward to compute the bino life-
time:

τχ̃0
2

=
~

Γ (χ̃0
2 → χ̃0

1X)
=

6.58 10−25GeV.s
Γ (χ̃0

2 → χ̃0
1X)

. (55)

For an energetic bino, the length of flight in the lab system
is given by

lχ̃0
2

=
√
γ2 − 1 cτχ̃0

2
' ~c

Γ (χ̃0
2 → χ̃0

1X)

' 1.97 10−16GeV.m
Γ (χ̃0

2 → χ̃0
1X)

(56)

One can then simply read off lχ̃0
2

from Fig. 9. For Γ (χ̃0
2 →

χ̃0
1X) <∼ 10−16 GeV (which corresponds to λ <∼ 5.10−6

or strong kinematical suppression), the bino escapes the
detector, and the signature is the same as in the MSSM. In
the other cases, we obtain the expected additional cascade,
with a macroscopically displaced vertex (lχ̃0

2
> 1 mm) for

Γ (χ̃0
2 → χ̃0

1X) <∼ 5.10−13 GeV.

5 Conclusions and outlook

The purpose of the present paper was the calculation of
the NLSP partial and total decay widths in the (M+1)SSM,
in the case where the LSP is a singlino and sparticle pro-
duction is kinematically allowed at LEP2. Then, the NLSP
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is essentially a bino and the bino to singlino transition ap-
pears at the end of all sparticle decay chains. (On the
other hand, if the singlino is not the LSP, it will be nearly
impossible to produce neither the singlino nor the Higgs
singlet in collider experiments, since the singlet sector is
always almost decoupled from the rest of the theory. The
(M+1)SSM is then very difficult to disentangle from the
MSSM.)

We worked in the context of the constrained (M+1)SSM,
with universal boundary conditions for the soft
terms at the GUT scale. The essential features of this sce-
nario have been discussed, using analytic approximations,
in Sect. 3. We have seen that, while the singlino LSP sce-
nario is not a necessary consequence of the model, it corre-
sponds to a natural “gaugino dominated” scenario, gaug-
ino masses being the largest soft terms. Furthermore, the
singlino is automatically the LSP for very small Yukawa
couplings λ and κ.

The gross features of the bino decay widths are easy
to understand using analytic approximations. In Sect. 4
we have presented and discussed such approximate ana-
lytic expressions for the partial decay widths, which are
in good agreement with the results obtained numerically
(without the corresponding approximations). The numeric
results have been presented in the form of the Figs. 3-9.
(The corresponding detailed formulae are given in the ap-
pendices.)

Let us summarize the behavior of the total decay width
Γ (χ̃0

2 → χ̃0
1X). In principle, the bino partial and total de-

cay widths can vary over many orders of magnitude, de-
pending on the Yukawa coupling λ, the bino mass mχ0

2
∼

M1 and the singlino to bino mass ratio η (with η → 0 for
λ → 0). Generally one has

Γ (χ̃0
2 → χ̃0

1X) <∼ 10−6λ2M1. (57)

For |η| � 1, the inequality (57) can roughly be replaced
by an equality. For |η| → 1, however, Γ (χ̃0

2 → χ̃0
1X) can

be considerably smaller than the right hand side of (57)
because of kinematical suppression. The allowed range of
the total decay width as a function of λ is displayed in
Fig. 9, and the corresponding bino lifetime can lead to
macroscopically displaced vertices. For very small values
of Γ (χ̃0

2 → χ̃0
1X), the bino may even decay outside the

detector (in which case it imitates the true LSP of the
MSSM). However, this requires tiny Yukawa couplings
(λ <∼ 5.10−6) or strong kinematical suppression. Such sce-
narios could be probed by the same kind of apparatus as
the slow neutralino to gravitino transition in the context
of Gauge Mediated Supersymmetry Breaking models [15].

For a given value of Γ (χ̃0
2 → χ̃0

1X), the branching ra-
tios of the bino still vary essentially with the bino and
singlino masses. In most of the parameter space, the three
body decay (Fig. 1) dominates, and the relevant final sta-
tes are νν̄, l+l− or qq̄ (q = u, d, c, s, b) and missing energy.
For small values of the bino mass (∼ 30 GeV), the νν̄
channel dominates (Fig. 5). Hence, the bino decays invisi-
bly and its signature is just missing energy as for the true
LSP of the MSSM. However, this channel never exceeds
90%, the remaining 10% corresponding to the visible l+l−

channel (Fig. 4). For larger values of the bino mass (up
to MZ), on the other hand, the invisible final state νν̄
becomes less important and the charged lepton channel
contributes up to 100%. The partial width into qq̄ is al-
ways small compared to the partial width into l+l−, and
we expect at most one jet event for ten charged lepton
events. The characteristic signature for sparticle produc-
tion would then be lepton events with high multiplicity (at
least four, in e+e− → χ̃0

2χ̃
0
2) plus missing energy, eventu-

ally with displaced vertices.
However, in the window 10−3 <∼ λ <∼ 10−2, the two

body decay χ̃0
2 → χ̃0

1S1 dominates, if kinematically al-
lowed (Fig. 7). S1 is then essentially the Higgs singlet with
a mass varying between 3 and 35 GeV. If its mass is larger
than ∼ 10 GeV, S1 decays into bb̄ (with a branching ratio
of ∼ 90%); otherwise, τ+τ−/cc̄ are favored. (For such val-
ues of λ, the bino and the real Higgs singlet will have short
lifetimes.) The relevant final state would be two b-jets (or
eventually τ+τ−/c-jets) with an invariant mass peaked
below 35 GeV. Such processes are totally exluded in the
MSSM and would be a strong sign for the (M+1)SSM.

Finally, in the degenerate case η ∼ −1, all the previous
tree level channels are kinematically suppressed, and the
radiative decay χ̃0

2 → χ̃0
1γ dominates (Fig. 8). In such a

scenario, the bino would be very long lived (lχ̃0
2
>∼ 1 m).

(This corresponds, however, to a tiny fraction of the pa-
rameter space.) In contrast to the MSSM [11], a domi-
nance of the radiative decay is compatible with universal
soft terms, and the (rather disfavored) condition tanβ ∼ 1
is not required in the (M+1)SSM.

Herewith we have summarized our results, which have
been obtained for mχ0

2
< MZ , the range accessible at

LEP2. Let us, at the end, comment on the case of a bino
which is heavier than the Z. One should consider two dif-
ferent regimes:

In the intermediate range MZ < mχ0
2
<∼ 130 GeV,

the main decay mode becomes χ̃0
2 → χ̃0

1Z, with χ̃0
1 and

Z on shell. The total decay width is again proportional
to λ2, though larger than in the case of the three body
decay (since no virtual particle needs to be exchanged).
Hence, the bino would not be too long lived in this case,
except for extremely small values of λ. The characteristic
signature for this additionnal cascade is missing energy
plus the typical Z decay products.

For a very heavy bino, mχ0
2
>∼ 130 GeV, one has

mχ0
2
> ml̃R

as already noticed in (29). The “right” charged
sleptons are hence light enough to be produced on shell,
and the main channel is χ̃0

2 → ll̃R. Since one needs at least
mχ0

2
>∼ 250 GeV in order to have mχ0

2
−ml̃R

>∼ 10 GeV,
the emitted lepton is very soft, hence difficult to detect.
Yet, in this case, the true NLSP is the charged slepton and
the process of interest is l̃R → l±χ̃0

1, appearing at the end
of all sparticle decay chains. Then one obtains a charged
slepton (eventually long lived, depending on λ) decaying
into an energetic lepton plus missing energy (the singlino).
This case corresponds, however, to a very heavy sparticle
spectrum, disfavored by solutions to the hierarchy prob-
lem.
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Appendix

A Neutralino sector

The mass terms for the neutralinos are given by the fol-
lowing part of the lagrangian:

L =
ig1√

2
(−h1λ1ψ1 + h2λ1ψ2) +

ig2√
2
(h1λ

3
2ψ1 − h2λ

3
2ψ2)

+λsψ1ψ2 + λh1ψ2ψs + λh2ψ1ψs − κsψsψs

+
1
2
M1λ1λ1 +

1
2
M2λ

3
2λ

3
2 + h.c. (58)

where the two component spinors λ1, λ3
2, ψ1, ψ2 and ψs

are the supersymmetric partners of the B, W 3, H0
1 , H0

2
and S bosons respectively. We introduce the 5 component
neutralino vector [16]:

(ψ0)T = (−iλ3
2,−iλ1, ψ1, ψ2, ψs). (59)

Then the mass terms read

L = −1
2
(ψ0)TM0(ψ0) + h.c. (60)

where the (symmetric) neutralino mass matrixM0 is given
by

M0 =




M2 0
−g2h1√

2
g2h2√

2
0

M1
g1h1√

2
−g1h2√

2
0

0 −µ −λh2
0 −λh1

2κs



. (61)

The physical mass eigenstates are obtained by diago-
nalizing M0 with a unitary matrix N :

mχ0
i
δij = NimNjnM

0
mn (62)

mχ0
i

being the mass eigenvalues in increasing order of the
neutralino states:

χ0
i = Nijψ

0
j i = 1, . . . , 5. (63)

We take N real and orthogonal. Then some of the
mass eigenvalues may be negative. Finally, one obtains the
proper 4 component neutralino eigenstates by defining the
Majorana spinors:

χ̃0
i =

(
χ0

i

χ̄0
i

)
i = 1, . . . , 5. (64)

B Higgs sector

We give here the potential, the minimization equations
and the mass matrix for the neutral scalar Higgs without
radiative corrections. The purpose of this appendix is only
to set up our conventions and to provide some guidelines
in order to make our analytic approximations easier to
understand. A more complete analysis of this sector can
be found in [3].

The scalar potential for the neutral Higgs fields is given
by

V = λ2(|H0
1 |2|S|2 + |H0

2 |2|S|2 + |H0
1 |2|H0

2 |2) + κ2|S2|2

−λκ(H0
1H

0
2S

∗2 + h.c.) +
g2

4
(|H0

1 |2 − |H0
2 |2)2

+m2
1|H0

1 |2 +m2
2|H0

2 |2 +m2
S |S|2

−λAλ(H0
1H

0
2S + h.c.) +

κAκ

3
(S3 + h.c.) (65)

where g2 = 1
2 (g2

1 + g2
2). We split the Higgs fields into real

and imaginary parts:

H0
1 = h1 +

H0
1 R + iH0

1 I√
2

, H0
2 = h2 +

H0
2 R + iH0

2 I√
2

,

S = s+
SR + iSI√

2
. (66)

The conditions for extrema of (65) are

h1(λ2(h2
2 + s2) +

g2

2
(h2

1 − h2
2) +m2

1)

−λh2s(Aλ + κs) = 0, (67)

h2(λ2(h2
1 + s2) − g2

2
(h2

1 − h2
2) +m2

2)

−λh1s(Aλ + κs) = 0, (68)
s(λ2(h2

1 + h2
2) + 2κ2s2 − 2λκh1h2 +m2

S)
−λAλh1h2 + κAκs

2 = 0. (69)

After the elimination of m2
1, m

2
2 and m2

S using (67-69),
the elements of the 3x3 symmetric mass matrix for the
CP-even scalars in the basis (H0

1 R, H
0
2 R, SR) are

M2
S,11 = g2h2

1 + λs
h2

h1
(Aλ + κs), (70)

M2
S,22 = g2h2

2 + λs
h1

h2
(Aλ + κs), (71)

M2
S,33 = λAλ

h1h2

s
+ κs(Aκ + 4κs), (72)

M2
S,12 = (2λ2 − g2)h1h2 − λs(Aλ + κs), (73)

M2
S,13 = 2λ2h1s+ λh2(Aλ + 2κs), (74)

M2
S,23 = 2λ2h2s+ λh1(Aλ + 2κs). (75)

Likewise, the elements of the 2x2 mass matrix for the
CP-odd pseudoscalars in the basis (A0, SI) where the
would-be Goldstone boson has been projected out, read

M2
P,11 = λs(Aλ + κs)

h2
1 + h2

2

h1h2
, (76)
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M2
P,22 = λ(Aλ + 4κs)

h1h2

s
− 3κAκs, (77)

M2
P,12 = λ(Aλ − 2κs)

√
h2

1 + h2
2. (78)

The mass eigenstates of the scalars are denoted by
Sa=1,2,3(mS1 ≤ mS2 ≤ mS3) and those of the pseudo-
scalars by Pα=1,2(mP1 ≤ mP2).

C Approximate results of the integrated RGEs

In this appendix we display some simple analytic results of
the integrated RGEs in the approximation where the de-
pendence on all Yukawa couplings but the one of the top
quark, ht, are neglected. Such solutions have been first
discussed in the MSSM framework in [17]. The Renormal-
ization Group Equations for the (M+1)SSM can be found
in [2]. We assume universality for the soft terms at the
GUT scale and no flavor mixing. For a more complete
and general set of solutions, cf [18].

First, let us define the parameter ρ by

ρ =
h2

t

h2
crit

(79)

where hcrit is the infra-red fixed point solution for ht,
hcrit ' 1.13. We find from our numerical results with a
singlino LSP: .7 <∼ ρ <∼ .8.

The Yukawa couplings λ and κ are only slightly renor-
malized:

λ ' λ0 , κ ' κ0. (80)

The results for the soft trilinear terms read

Aλ = A0

(
1 − ρ

2

)
+ (1.11ρ− .59)M0, (81)

Aκ = A0. (82)

Soft scalar masses are as follows

m2
S = m2

0, (83)

m2
1 =

(
1 − 3

2
ρ

)
m2

0 − ρ(1 − ρ)
2

(A0 − 2.22M0)2

+(.52 − 3.71ρ)M2
0 , (84)

m2
2 = m2

0 + .52M2
0 , (85)

m2
L = m2

0 + .52M2
0 , (86)

m2
E = m2

0 + .15M2
0 . (87)

Finally, we have the usual gaugino mass relations

M2 = .82M0, M1 =
5
3
g1
g2
M2 ' 1

2
M2 = .41M0. (88)

D Decay widths

We first repeat some general features of the three body
decay of χ̃0

2 with massmχ0
2

and momentum p2 into χ̃0
1 with

mass mχ0
1

and momentum p1 and two massless fermions
f and f̄ with momenta k and k′ respectively.

Using the Mandelstam variables

s = (p2 − p1)2, t = (p2 − k)2, u = (p1 − k)2, (89)

the differential decay width can be written as

dΓ =
Nf

512π3m3
χ0

2

∑
spins

|M|2dudt (90)

where M is the invariant amplitude for the processes un-
der consideration and Nf is the color factor of the fermi-
ons. The different diagrams are shown in Fig. 1. As seen
in the main part of the paper, we only need the inte-
grated width for each process separately, without interfer-
ence term (except in the case of sfermion exchange, see
below). The integration limits are


0 ≤ s ≤ (|mχ0
2
| − |mχ0

1
|)2

tmin,max = 1
2

(
m2

χ0
2
−m2

χ0
1
− s±

√
λ(m2

χ0
2
,m2

χ0
1
, s)
)

u+ t+ s = m2
χ0

2
+m2

χ0
1

(91)

λ being the usual triangle function:

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (92)

To begin with, let us consider the Z exchange. We use
the following notations:

– The parameters in the Z-fermions coupling are

Lf = T3f −Qf sin2 θW , Rf = −Qf sin2 θW (93)

where T3f and Qf are the isospin and the charge of
the fermion respectively.

– The Z propagator is given by

DZ(x) = (x−M2
Z + iMZΓZ)−1. (94)

– The parameter in the Zχ̃0
1χ̃

0
2 coupling is

O12 = N13N23 −N14N24 (95)

where Nij denote the mixing components of the neu-
tralinos as given by (63).

The invariant amplitude of the process is [9]∑
spins

|MZ |2 = 4g4(L2
f +R2

f )O2
12|DZ(s)|2×

×
(
(m2

χ0
2
− t)(t−m2

χ0
1
) + t ↔ u+ 2mχ0

2
mχ0

1
s
)
. (96)

Hence, the partial width reads

Γ (χ̃0
2

Z−→ χ̃0
1ff̄) =

Nfg
4(L2

f +R2
f )O2

12

16π3

m5
χ0

2

M4
Z

IZ(η, ωZ).

(97)
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IZ is a phase space integral depending on η defined in (16)
and ωZ = mχ0

2
/MZ :

IZ(η, ωZ) =

1
3

∫ 1−|η|

1−η2
2

dz
∆(4z − 1 − 2η + 3η2)(1 + η − z)

(ω2
Z(2z + η2 − 1) − 1)2

(98)

with ∆ =
√

(1 − z)2 − η2.
Next we turn to the Higgs exchange. We only display

formulae for a CP-even Higgs Sa. The Saχ̃
0
1χ̃

0
2 coupling

reads

Qa12 =
λ√
2
(Sa1(N15N24 +N14N25)

+Sa2(N15N23 +N13N25)

+Sa3(N13N24 +N14N23)) −
√

2κSa3N15N25

+
1
2
(g2N11 − g1N12)(N23Sa1 −N24Sa2)

+
1
2
(g2N21 − g1N22)(N13Sa1 −N14Sa2) (99)

where Sai denote the mixing components of Sa in the basis
(66). The Higgs-fermion coupling is

Qaf =
mfSa1√

2h1
for an up-type quark, (100)

Qaf =
mfSa2√

2h2

for a down-type quark or
a charged lepton (101)

where mf is the fermion mass. With the Higgs propagator
Da, the invariant amplitude reads
∑

spins

|Ma|2 =

4Q2
a12Q

2
af |Da(s)|2(m2

χ0
2
+m2

χ0
1
+mχ0

2
mχ0

1
− s)s,(102)

leading to the following partial width:

Γ (χ̃0
2

Sa−→ χ̃0
1ff̄) =

NfQ
2
a12Q

2
af

16π3

m5
χ0

2

m4
Sa

Ia(η, ωa) (103)

where the phase space integral Ia depends on η and ωa =
mSa/mχ0

2
:

Ia(η, ωa) =
∫ 1−|η|

1−η2
2

dz
∆ω4

a(2z − 1 + η2)(1 + η − z)
(2z + η2 − ω2

a − 1)2
. (104)

Finally, we consider the sfermion exchange. Neglecting
the fermion Yukawa coupling, the χ̃0

i ff̃R vertex is

fi = g1
√

2QfNi2, (105)

and for the χ̃0
i ff̃L vertex one gets

fi =
√

2 (g2T3fNi1 − g1(T3f −Qf )Ni2). (106)

With the sfermion propagatorDf̃ , the invariant amplitude
reads [9]

∑
spins

|Mf̃ |2 = f2
1 f

2
2

(
(m2

χ0
2
− t)(t−m2

χ0
1
)|Df̃ (t)|2 + t ↔ u

+2mχ0
2
mχ0

1
sDf̃ (t)Df̃ (u)

)
. (107)

The last term is an interference term. The partial width
is then given by

Γ (χ̃0
2

f̃−→ χ̃0
1ff̄) =

Nff
2
1 f

2
2

64π3

m5
χ0

2

m4
f̃

If̃ (η, ωf̃ ). (108)

If̃ (η, ωf̃ ) is the phase space integral, depending on η and
ωf̃ = mχ0

2
/mf̃ :

If̃ (η, ωf̃ ) =
1
4

∫ 1

η2
dx

(1 − x)2(x− η2)2

(ω2
f̃
x− 1)2x

+ η

∫ 1−|η|

1−η2
2

dz

∫ z+∆
2

z−∆
2

dx (109)

× 2z + η2 − 1
(ω2

f̃
(1 − 2x) − 1)(ω2

f̃
(1 − 2z + 2x) − 1)

.

Now, we turn to the two body decay. The decay rate
for the on-shell scalar Higgs production of Fig. 2 reads

Γ (χ̃0
2 → χ̃0

1Sa) =
Q2

a12mχ0
2

16π

√
λ(1, η2, ω2

a) (1 + 2η + η2 − ω2
a). (110)

Finally, let us consider the radiative decay χ̃0
2 → χ̃0

1γ.
The analytic approximation used in the main part of the
paper includes only charged lepton/“right” slepton loops
(for details, see [10,14]). The different contributions are
shown in Fig. 3. The decay width reads

Γ (χ̃0
2 → χ̃0

1γ) =
g2

χχγ(m2
χ0

2
−m2

χ0
1
)3

8πm5
χ0

2

. (111)

gχχγ is an effective coupling:

gχχγ =
e

16π2

∑
f

NfQff1f2Iγ(η, ωf̃ ) (112)

where f1,2 are given in (105) and

Iγ(η, ωf̃ ) = (113)

1
1 − η2

∫ 1

0
dx

(
1 + η +

1 − ηω2
f̃
x

(1 − η)ω2
f̃
x

log

(
1 − ω2

f̃
x

1 − η2ω2
f̃
x

))
.



U. Ellwanger, C. Hugonie: Neutralino Cascades in the (M+1)SSM 737

References

1. P. Fayet, Nucl. Phys. B 90 (1975) 104;
H.P. Nilles, M. Srednicki, D. Wyler, Phys. Lett. B 120
(1983) 346;
J. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski, F.
Zwirner, Phys. Rev. D 39 (1989) 844;
L. Durand and J.L. Lopez, Phys. Lett. B 217 (1989) 463;
M. Drees, Int. J. Mod. Phys. A 4 (1989) 3635

2. J.P. Derendinger, C.A. Savoy, Nucl. Phys. B 237 (1984)
307

3. U. Ellwanger, Phys. Lett. B 303 (1993) 271;
U. Ellwanger, M. Rausch de Traubenberg, C.A. Savoy, Z.
Phys. C 67 (1995) 665;
T. Elliott, S.F. King, P.L. White, Phys. Rev. D 49 (1994)
2435

4. U. Ellwanger, M. Rausch de Traubenberg, C.A. Savoy,
Phys. Lett. B 315 (1993) 331;
S.F. King, P.L. White, Phys. Rev. D 52 (1995) 4183

5. U. Ellwanger, M. Rausch de Traubenberg, C.A. Savoy,
Nucl. Phys. B 492 (1997) 21

6. S.A. Abel, S. Sarkar, P.L. White, Nucl. Phys. B 454
(1995) 663;
S.A. Abel, Nucl. Phys. B 480 (1996) 55-72; hep-ph
9603301

7. F. Franke, H. Fraas, Z. Phys. C 72 (1996) 309
8. A. Stephan, hep-ph 9709262; hep-ph/9704232 (to appear

in Phys. Lett. B)
9. A. Bartl, H. Fraas, W. Majerotto, Nucl. Phys. B 278

(1986) 1
10. H.E. Haber, D. Wyler, Nucl. Phys. B 323 (1989) 267
11. S. Ambrosanio, B. Mele, Phys. Rev. D 55 (1997) 1399;

D 56 (1997) 3157
12. M. Gallinaro, CDF Collab., FERMILAB-CONF-97/004-E
13. J.F. Grivaz, hep-ph/9709505
14. C. Hugonie, unpublished
15. K. Maki, S. Orito, hep-ph/9706382
16. H.E. Haber, G.L. Kane, Phys. Rep. 117 (1985) 75
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